34,664 research outputs found

    Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas

    Full text link
    The dynamics of the ultra-intense circularly polarized solitons under inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell and relativistic hydrodynamic equations and is solved with fully implicit energy-conserving numerical scheme. It is shown that a propagating weak soliton can be decreased and reflected by increasing plasma background, which is consistent with the existing studies based on hypothesis of weak density response. However it is found that ultra-intense soliton is well trapped and kept still when encountering increasing background. Probably, this founding can be applied for trapping and amplifying high-intensity laser-fields.Comment: 4 pages, 3 figures, submitted to Phys. Plasma

    Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2

    Full text link
    The in-plane resistivity ρ\rho and thermal conductivity κ\kappa of FeAs-based superconductor KFe2_2As2_2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior ρ(T)T1.5\rho(T) \sim T^{1.5} at Hc2H_{c_2} = 5 T, and the development of a Fermi liquid state with ρ(T)T2\rho(T) \sim T^2 when further increasing field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field Hc2H_{c_2}. In zero field there is a large residual linear term κ0/T\kappa_0/T, and the field dependence of κ0/T\kappa_0/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2_2As2_2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485

    Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    Full text link
    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J×B\bm{J}\times\bm{B} effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte

    Nodeless superconductivity in Ca3Ir4Sn13: evidence from quasiparticle heat transport

    Full text link
    We report resistivity ρ\rho and thermal conductivity κ\kappa measurements on Ca3_3Ir4_4Sn13_{13} single crystals, in which superconductivity with Tc7T_c \approx 7 K was claimed to coexist with ferromagnetic spin-fluctuations. Among three crystals, only one crystal shows a small hump in resistivity near 20 K, which was previously attributed to the ferromagnetic spin-fluctuations. Other two crystals show the ρT2\rho \sim T^2 Fermi-liquid behavior at low temperature. For both single crystals with and without the resistivity anomaly, the residual linear term κ0/T\kappa_0/T is negligible in zero magnetic field. In low fields, κ0(H)/T\kappa_0(H)/T shows a slow field dependence. These results demonstrate that the superconducting gap of Ca3_3Ir4_4Sn13_{13} is nodeless, thus rule out nodal gap caused by ferromagnetic spin-fluctuations.Comment: 5 pages, 4 figure

    network pruning via transformable architecture search

    Full text link
    Network pruning reduces the computation costs of an over-parameterized network without performance damage. Prevailing pruning algorithms pre-define the width and depth of the pruned networks, and then transfer parameters from the unpruned network to pruned networks. To break the structure limitation of the pruned networks, we propose to apply neural architecture search to search directly for a network with flexible channel and layer sizes. The number of the channels/layers is learned by minimizing the loss of the pruned networks. The feature map of the pruned network is an aggregation of K feature map fragments (generated by K networks of different sizes), which are sampled based on the probability distribution.The loss can be back-propagated not only to the network weights, but also to the parameterized distribution to explicitly tune the size of the channels/layers. Specifically, we apply channel-wise interpolation to keep the feature map with different channel sizes aligned in the aggregation procedure. The maximum probability for the size in each distribution serves as the width and depth of the pruned network, whose parameters are learned by knowledge transfer, e.g., knowledge distillation, from the original networks. Experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate the effectiveness of our new perspective of network pruning compared to traditional network pruning algorithms. Various searching and knowledge transfer approaches are conducted to show the effectiveness of the two components. Code is at: https://github.com/D-X-Y/NAS-Projects.Comment: Published in the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019

    Phase equilibrium in two orbital model under magnetic field

    Full text link
    The phase equilibrium in manganites under magnetic field is studied using a two orbital model, based on the equivalent chemical potential principle for the competitive phases. We focus on the magnetic field induced melting process of CE phase in half-doped manganites. It is predicted that the homogenous CE phase begins to decompose into coexisting ferromagnetic phase and CE phase once the magnetic field exceeds the threshold field. In a more quantitative way, the volume fractions of the two competitive phases in the phase separation regime are evaluated.Comment: 4 pages, 4 figure
    corecore